Some classifications of hyperbolic vector evolution equations

نویسنده

  • Stephen C. ANCO
چکیده

Motivated by recent work on integrable flows of curves and 1+1 dimensional sigma models, several O(N)-invariant classes of hyperbolic equations Utx = f(U,Ut, Ux) for an N -component vector U(t, x) are considered. In each class we find all scalinghomogeneous equations admitting a higher symmetry of least possible scaling weight. Sigma model interpretations of these equations are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Symmetry Classifications of Hyperbolic Vector Evolution Equations

Motivated by recent work on integrable flows of curves and 1+1 dimensional sigma models, several O(N)-invariant classes of hyperbolic equations Utx = f(U,Ut, Ux) for an N -component vector U(t, x) are considered. In each class we find all scalinghomogeneous equations admitting a higher symmetry of least possible scaling weight. Sigma model interpretations of these equations are presented.

متن کامل

Monodromy problem for the degenerate critical points

For the polynomial planar vector fields with a hyperbolic or nilpotent critical point at the origin, the monodromy problem has been solved, but for the strongly degenerate critical points this problem is still open. When the critical point is monodromic, the stability problem or the center- focus problem is an open problem too. In this paper we will consider the polynomial planar vector fields ...

متن کامل

Strongly hyperbolic second order Einstein’s evolution equations

BSSN-type evolution equations are discussed. The name refers to the Baumgarte, Shapiro, Shibata, and Nakamura version of the Einstein evolution equations, without introducing the conformal-traceless decomposition but keeping the three connection functions and including a densitized lapse. It is proved that a pseudodifferential first order reduction of these equations is strongly hyperbolic. In ...

متن کامل

Existence of Pseudo Almost Periodic Solutions to Some Classes of Partial Hyperbolic Evolution Equations

The paper examines the existence of pseudo almost periodic solutions to some classes of partial hyperbolic evolution equations. Namely, sufficient conditions for the existence and uniqueness of pseudo almost periodic solutions to those classes of hyperbolic evolution equations are given. Applications include the existence of pseudo almost periodic solutions to the transport and heat equations w...

متن کامل

Hyperbolic tetrad formulation of the Einstein equations for numerical relativity

The tetrad-based equations for vacuum gravity published by Estabrook, Robinson, and Wahlquist are simplified and adapted for numerical relativity. We show that the evolution equations as partial differential equations for the Ricci rotation coefficients constitute a rather simple first-order symmetrizable hyperbolic system, not only for the Nester gauge condition on the acceleration and angular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004